Search results
Results from the WOW.Com Content Network
At the top of the mast is the attachment point (colloquially called a Jesus nut) for the rotor blades called the hub. The rotor blades are then attached to the hub, and the hub can have 10-20 times the drag of the blade. [1] Main rotor systems are classified according to how the main rotor blades are attached and move relative to the main rotor ...
In aeronautics, a swashplate is a mechanical device that translates input via the helicopter flight controls into motion of the main rotor blades. Because the main rotor blades are spinning, the swashplate is used to transmit three of the pilot's commands from the non-rotating fuselage to the rotating rotor hub and mainblades.
The rotor consists of a mast, hub and rotor blades. [citation needed] The mast is a cylindrical metal shaft that extends upwards from the transmission. At the top of the mast is the attachment point for the rotor blades called the hub. Main rotor systems are classified according to how the rotor blades are attached and move relative to the hub.
Collective angle of attack for the rotor main blades via the swashplate: Increase/decrease pitch angle of all main rotor blades equally, causing the aircraft to ascend/descend Increase/decrease torque. In some helicopters the throttle control(s) is a part of the collective stick. Rotor speed is kept basically constant throughout the flight.
The rotorhead is where the lift force from the rotor blades act. The rotorhead is connected to the main drive shaft via the Jesus nut, and houses several other components such as the swash plate, flight control linkages and fly-bars. [1] The rotor hub is also where the centre of gravity acts on the helicopter. The rotor head of a Sikorsky S-92
A rotor blade produces more lift in the advancing half. As a blade moves toward the direction of flight, the forward motion of the aircraft increases the speed of the air flowing around the blade until it reaches a maximum when the blade is perpendicular to the relative wind. At the same time, a rotor blade in the retreating half produces less ...
Dissymmetry of lift in an American-style helicopter. Consider a single-rotor helicopter in still air. For a stationary (hovering) helicopter, whose blades of length of r metres are rotating at ω radians per second, the blade tip is moving at a speed rω meters per second. As the blades rotate, the speed of the blade-tips relative to the air ...
When the blade retreats, the blade falls downward again, increasing the AOA and therefore generating greater lift. There are three general designs. The earliest, and by far, least common design today, is the fully rigid rotor system; the blades are rigidly fixed to the rotor hub but made of a flexible material that allows some degree of flap ...