Search results
Results from the WOW.Com Content Network
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry, and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2,R). The group of rotations alone is the circle group T. All circles are similar. [12] A circle circumference and radius are ...
The area-equivalent radius of a 2D object is the radius of a circle with the same area as the object Cross sectional area of a trapezoidal open channel, red highlights the wetted perimeter, where water is in contact with the channel.
[1] [4] That is, if a given munitions design has a CEP of 100 m, when 100 munitions are targeted at the same point, an average of 50 will fall within a circle with a radius of 100 m about that point. There are associated concepts, such as the DRMS (distance root mean square), which is the square root of the average squared distance error, a ...
Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle. Table of solutions, 1 ≤ n ≤ 20 [ edit ]
An inversion in their tangent point with respect to a circle of appropriate radius transforms the two touching given circles into two parallel lines, and the third given circle into another circle. Thus, the solutions may be found by sliding a circle of constant radius between two parallel lines until it contacts the transformed third circle.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Following Archimedes' argument in The Measurement of a Circle (c. 260 BCE), compare the area enclosed by a circle to a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius. If the area of the circle is not equal to that of the triangle, then it must be either greater or less.