enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Big data - Wikipedia

    en.wikipedia.org/wiki/Big_data

    In many big data projects, there is no large data analysis happening, but the challenge is the extract, transform, load part of data pre-processing. [ 225 ] Big data is a buzzword and a "vague term", [ 226 ] [ 227 ] but at the same time an "obsession" [ 227 ] with entrepreneurs, consultants, scientists, and the media.

  3. Critical data studies - Wikipedia

    en.wikipedia.org/wiki/Critical_data_studies

    First, 'big data' is an important aspect of twenty-first century society, and the analysis of 'big data' allows for a deeper understanding of what is happening and for what reasons. [1] Big data is important to critical data studies because it is the type of data used within this field.

  4. Lambda architecture - Wikipedia

    en.wikipedia.org/wiki/Lambda_architecture

    The two view outputs may be joined before presentation. The rise of lambda architecture is correlated with the growth of big data, real-time analytics, and the drive to mitigate the latencies of map-reduce. [1] Lambda architecture depends on a data model with an append-only, immutable data source that serves as a system of record.

  5. Data-intensive computing - Wikipedia

    en.wikipedia.org/wiki/Data-intensive_computing

    Data-intensive computing is intended to address this need. Parallel processing approaches can be generally classified as either compute-intensive, or data-intensive. [6] [7] [8] Compute-intensive is used to describe application programs that are compute-bound. Such applications devote most of their execution time to computational requirements ...

  6. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Then, analyze the source data to determine the most appropriate data and model building approach (models are only as useful as the applicable data used to build them). Select and transform the data in order to create models. Create and test models in order to evaluate if they are valid and will be able to meet project goals and metrics.

  7. Data-driven model - Wikipedia

    en.wikipedia.org/wiki/Data-driven_model

    Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]

  8. Predictive learning - Wikipedia

    en.wikipedia.org/wiki/Predictive_learning

    Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .

  9. Big data maturity model - Wikipedia

    en.wikipedia.org/wiki/Big_Data_Maturity_Model

    The TDWI big data maturity model is a model in the current big data maturity area and therefore consists of a significant body of knowledge. [6] Maturity stages. The different stages of maturity in the TDWI BDMM can be summarized as follows: Stage 1: Nascent. The nascent stage as a pre–big data environment. During this stage: