Search results
Results from the WOW.Com Content Network
[1] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric ...
Fibonacci sequence. In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 [1][2] and some (as ...
Volkswagen EA211 evo engine. The Volkswagen EA211 engine (EA = development order), also called modular gasoline engine kit, is a family of inline-three and inline-four petrol engines with variable valve timing developed by Volkswagen Group in 2011. [1] They all include a four-stroke engine and dual overhead camshaft drive into exhaust manifolds ...
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ (n) elements, φ being Euler's totient function, and is denoted as U (n) or ...
2 mod 3 (above), 3 mod 4, 2 or 3 mod 5, 3, 5, or 6 mod 7, or; 5 mod 8. Combinations of Mordell's identities can be used to expand for all except possibly those that are 1, 121, 169, 289, 361, or 529 mod 840. The smallest prime that these identities do not cover is 1009.
A covering system is called irredundant (or minimal) if all the residue classes are required to cover the integers. The first two examples are disjoint. The third example is distinct. A system (i.e., an unordered multi-set) of finitely many residue classes is called an -cover if it covers every integer at least times, and an exact -cover if it ...
X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by X = t 1 (7 × 11) × 4 + t 2 (5 × 11) × 4 + t 3 (5 × 7) × 6. where t 1 = 3 is the modular multiplicative inverse of 7 × 11 (mod 5), t 2 = 6 is the modular multiplicative inverse of 5 × 11 (mod 7) and t 3 = 6 is the modular multiplicative ...
For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8. Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m).