enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Human mitochondrial genetics - Wikipedia

    en.wikipedia.org/wiki/Human_mitochondrial_genetics

    Mitochondrial replication is controlled by nuclear genes and is specifically suited to make as many mitochondria as that particular cell needs at the time. Mitochondrial transcription in humans is initiated from three promoters, H1, H2, and L (heavy strand 1, heavy strand 2, and light strand promoters). The H2 promoter transcribes almost the ...

  3. X-linked dominant inheritance - Wikipedia

    en.wikipedia.org/wiki/X-linked_dominant_inheritance

    In medicine, X-linked dominant inheritance indicates that a gene responsible for a genetic disorder is located on the X chromosome, and only one copy of the allele is sufficient to cause the disorder when inherited from a parent who has the disorder. In this case, someone who expresses an X-linked dominant allele will exhibit the disorder and ...

  4. Human genetics - Wikipedia

    en.wikipedia.org/wiki/Human_genetics

    X-linked dominant inheritance will show the same phenotype as a heterozygote and homozygote. Just like X-linked inheritance, there will be a lack of male-to-male inheritance, which makes it distinguishable from autosomal traits. One example of an X-linked trait is Coffin–Lowry syndrome, which is caused by a mutation in ribosomal protein gene ...

  5. Pseudodominance - Wikipedia

    en.wikipedia.org/wiki/Pseudodominance

    Pseudodominance is the situation in which the inheritance of a recessive trait mimics a dominant pattern. [1]Normally, two recessive alleles need to be inherited (one from each parent) for the recessive trait to be expressed but recessive merely means that the trait is only expressed in the absence of the dominant alleles.

  6. Pedigree chart - Wikipedia

    en.wikipedia.org/wiki/Pedigree_chart

    Analysis of the pedigree using the principles of Mendelian inheritance can determine whether a trait has a dominant or recessive pattern of inheritance. Pedigrees are often constructed after a family member afflicted with a genetic disorder has been identified. This individual, known as the proband, is indicated on the pedigree by an arrow. [5]

  7. Paternal mtDNA transmission - Wikipedia

    en.wikipedia.org/wiki/Paternal_mtDNA_transmission

    In genetics, paternal mtDNA transmission and paternal mtDNA inheritance refer to the incidence of mitochondrial DNA (mtDNA) being passed from a father to his offspring. . Paternal mtDNA inheritance is observed in a small proportion of species; in general, mtDNA is passed unchanged from a mother to her offspring, [1] making it an example of non-Mendelian inh

  8. Sex linkage - Wikipedia

    en.wikipedia.org/wiki/Sex_linkage

    Illustration of some X-linked heredity outcomes (A) the affected father has one X-linked dominant allele, the mother is homozygous for the recessive allele: only daughters (all) will be affected. (B) the affected mother is heterozygous with one copy of the X-linked dominant allele: both daughters and sons will have 50% probability to be ...

  9. X-linked recessive inheritance - Wikipedia

    en.wikipedia.org/wiki/X-linked_recessive_inheritance

    X-linked recessive inheritance. X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be always expressed in males (who are necessarily hemizygous for the gene mutation because they have one X and one Y chromosome) and in females who are homozygous for the gene mutation, see zygosity.