Search results
Results from the WOW.Com Content Network
Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are reflections across the tangent line at that point, or as the solution of certain bivariate quadratic equations such as the reciprocal ...
The vertices of the hyperbola are the foci of the ellipse and its foci are the vertices of the ellipse (see diagram). or two parabolas, which are contained in two orthogonal planes and the vertex of one parabola is the focus of the other and vice versa. Focal conics play an essential role answering the question: "Which right circular cones ...
In polar coordinates, a conic section with one focus at the origin and, if any, the other at a negative value (for an ellipse) or a positive value (for a hyperbola) on the x-axis, is given by the equation = + , where e is the eccentricity and l is the semi-latus rectum.
A parabola has only one focus, and can be considered as a limit curve of a set of ellipses (or a set of hyperbolas), where one focus and one vertex are kept fixed, while the second focus is moved to infinity. If this transformation is performed on each conic in an orthogonal net of confocal ellipses and hyperbolas, the limit is an orthogonal ...
An ellipse can be defined as the locus of points for which the sum of the distances to two given foci is constant. A circle is the special case of an ellipse in which the two foci coincide with each other. Thus, a circle can be more simply defined as the locus of points each of which is a fixed distance from a single given focus.
The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation = In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length
Figure 1: is the centre of attraction, is the point corresponding to vector ¯, and is the point corresponding to vector ¯ Figure 2: Hyperbola with the points and as foci passing through Figure 3: Ellipse with the points and as foci passing through and
More generally, for any collection of points P i, weights w i, and constant C, one can define a circle as the locus of points X such that (,) =.. The director circle of an ellipse is a special case of this more general construction with two points P 1 and P 2 at the foci of the ellipse, weights w 1 = w 2 = 1, and C equal to the square of the major axis of the ellipse.