enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solid of revolution - Wikipedia

    en.wikipedia.org/wiki/Solid_of_revolution

    The surface created by this revolution and which bounds the solid is the surface of revolution. Assuming that the curve does not cross the axis, the solid's volume is equal to the length of the circle described by the figure's centroid multiplied by the figure's area (Pappus's second centroid theorem). A representative disc is a three ...

  3. Surface of revolution - Wikipedia

    en.wikipedia.org/wiki/Surface_of_revolution

    A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1] The volume bounded by the surface created by this revolution is the solid of revolution.

  4. Newton's minimal resistance problem - Wikipedia

    en.wikipedia.org/wiki/Newton's_minimal_resistance...

    Newton's minimal resistance problem is a problem of finding a solid of revolution which experiences a minimum resistance when it moves through a homogeneous fluid with constant velocity in the direction of the axis of revolution, named after Isaac Newton, who studied the problem in 1685 and published it in 1687 in his Principia Mathematica.

  5. Disc integration - Wikipedia

    en.wikipedia.org/wiki/Disc_integration

    Disc integration, also known in integral calculus as the disc method, is a method for calculating the volume of a solid of revolution of a solid-state material when integrating along an axis "parallel" to the axis of revolution. This method models the resulting three-dimensional shape as a stack of an infinite number of discs of varying radius ...

  6. Shell integration - Wikipedia

    en.wikipedia.org/wiki/Shell_integration

    Shell integration (the shell method in integral calculus) is a method for calculating the volume of a solid of revolution, when integrating along an axis perpendicular to the axis of revolution. This is in contrast to disc integration which integrates along the axis parallel to the axis of revolution.

  7. Torus - Wikipedia

    en.wikipedia.org/wiki/Torus

    A solid torus is a torus plus the volume inside the torus. Real-world objects that approximate a solid torus include O-rings, non-inflatable lifebuoys, ring doughnuts, and bagels. In topology, a ring torus is homeomorphic to the Cartesian product of two circles: S 1 × S 1, and the latter is taken to be the definition in that context. It is a ...

  8. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...

  9. Superegg - Wikipedia

    en.wikipedia.org/wiki/Superegg

    In geometry, a superegg is a solid of revolution obtained by rotating an elongated superellipse with exponent greater than 2 around its longest axis. It is a special case of superellipsoid. Unlike an elongated ellipsoid, an elongated superegg can stand upright on a flat surface, or on top of another superegg. [1]