enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable (s). It is a statistic used in the context of statistical models whose main purpose is either the prediction of future outcomes or the ...

  3. Pseudo-R-squared - Wikipedia

    en.wikipedia.org/wiki/Pseudo-R-squared

    Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R2 cannot be applied as a measure for goodness of fit and when a likelihood function is used to fit a model. In linear regression, the squared multiple correlation, R2 is used to assess goodness of fit as it represents the ...

  4. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    t. e. Okun's law in macroeconomics states that in an economy the GDP growth should depend linearly on the changes in the unemployment rate. Here the ordinary least squares method is used to construct the regression line describing this law. In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the ...

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to infer causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal ...

  6. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test ...

  7. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an n th degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E (y | x).

  8. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  9. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    Mallows's Cp. Mallows's. C. p. In statistics, Mallows's , [1][2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares. It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is ...