Search results
Results from the WOW.Com Content Network
In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable (s). It is a statistic used in the context of statistical models whose main purpose is either the prediction of future outcomes or the ...
t. e. Okun's law in macroeconomics states that in an economy the GDP growth should depend linearly on the changes in the unemployment rate. Here the ordinary least squares method is used to construct the regression line describing this law. In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the ...
Once a regression model has been constructed, it may be important to confirm the goodness of fit of the model and the statistical significance of the estimated parameters. Commonly used checks of goodness of fit include the R-squared, analyses of the pattern of residuals and hypothesis testing.
e. In statistics, linear regression is a model that estimates the linear relationship between a scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple ...
Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R2 cannot be applied as a measure for goodness of fit and when a likelihood function is used to fit a model. In linear regression, the squared multiple correlation, R2 is used to assess goodness of fit as it represents the ...
The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test ...
v. t. e. In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable. [1][2][3][4][5] That is, it concerns two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function ...
Mallows's Cp. Mallows's. C. p. In statistics, Mallows's , [1][2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares. It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is ...