Search results
Results from the WOW.Com Content Network
In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable (s). It is a statistic used in the context of statistical models whose main purpose is either the prediction of future outcomes or the ...
In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an n th degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E (y | x).
Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R2 cannot be applied as a measure for goodness of fit and when a likelihood function is used to fit a model. In linear regression, the squared multiple correlation, R2 is used to assess goodness of fit as it represents the ...
t. e. Okun's law in macroeconomics states that in an economy the GDP growth should depend linearly on the changes in the unemployment rate. Here the ordinary least squares method is used to construct the regression line describing this law. In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the ...
First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to infer causal relationships between the independent and dependent variables.
e. In statistics, linear regression is a model that estimates the linear relationship between a scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple ...
The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.
Weighted least squares (WLS), also known as weighted linear regression, [1][2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression. WLS is also a specialization of generalized least squares, when all the off ...