enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Distributed data processing - Wikipedia

    en.wikipedia.org/wiki/Distributed_data_processing

    Distributed data processing. Distributed data processing [1] (DDP) [2] was the term that IBM used for the IBM 3790 (1975) and its successor, the IBM 8100 (1979). Datamation described the 3790 in March 1979 as "less than successful." [3] [4] Distributed data processing was used by IBM to refer to two environments: IMS DB/DC; CICS/DL/I [5] [6]

  3. Distributed Data Management Architecture - Wikipedia

    en.wikipedia.org/wiki/Distributed_Data...

    Distributed Data Management Architecture (DDM) is IBM's open, published software architecture for creating, managing and accessing data on a remote computer. DDM was initially designed to support record-oriented files; it was extended to support hierarchical directories, stream-oriented files, queues, and system command processing; it was further extended to be the base of IBM's Distributed ...

  4. Distributed computing - Wikipedia

    en.wikipedia.org/wiki/Distributed_computing

    Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers. [1] [2] The components of a distributed system communicate and coordinate their actions by passing messages to

  5. Distributed algorithm - Wikipedia

    en.wikipedia.org/wiki/Distributed_algorithm

    A distributed algorithm is an algorithm designed to run on computer hardware constructed from interconnected processors. Distributed algorithms are used in different application areas of distributed computing , such as telecommunications , scientific computing , distributed information processing , and real-time process control .

  6. Distributed data flow - Wikipedia

    en.wikipedia.org/wiki/Distributed_data_flow

    Formally, we represent each event in a distributed flow as a quadruple of the form (x,t,k,v), where x is the location (e.g., the network address of a physical node) at which the event occurs, t is the time at which this happens, k is a version, or a sequence number identifying the particular event, and v is a value that represents the event payload (e.g., all the arguments passed in a method ...

  7. Stream processing - Wikipedia

    en.wikipedia.org/wiki/Stream_processing

    Stream processing is especially suitable for applications that exhibit three application characteristics: [citation needed] Compute intensity, the number of arithmetic operations per I/O or global memory reference. In many signal processing applications today it is well over 50:1 and increasing with algorithmic complexity.

  8. RM-ODP - Wikipedia

    en.wikipedia.org/wiki/RM-ODP

    The RM-ODP view model, which provides five generic and complementary viewpoints on the system and its environment.. Reference Model of Open Distributed Processing (RM-ODP) is a reference model in computer science, which provides a co-ordinating framework for the standardization of open distributed processing (ODP).

  9. Distributed artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Distributed_artificial...

    The objectives of Distributed Artificial Intelligence are to solve the reasoning, planning, learning and perception problems of artificial intelligence, especially if they require large data, by distributing the problem to autonomous processing nodes (agents). To reach the objective, DAI requires: