Search results
Results from the WOW.Com Content Network
The term "Z-test" is often used to refer specifically to the one-sample location test comparing the mean of a set of measurements to a given constant when the sample variance is known. For example, if the observed data X 1 , ..., X n are (i) independent, (ii) have a common mean μ, and (iii) have a common variance σ 2 , then the sample average ...
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
(z is the distance from the mean in relation to the standard deviation of the mean). For non-normal distributions it is possible to calculate a minimum proportion of a population that falls within k standard deviations for any k (see: Chebyshev's inequality). Two-sample z-test
For exactness, the t-test and Z-test require normality of the sample means, and the t-test additionally requires that the sample variance follows a scaled χ 2 distribution, and that the sample mean and sample variance be statistically independent. Normality of the individual data values is not required if these conditions are met.
For example, the test statistic might follow a Student's t distribution with known degrees of freedom, or a normal distribution with known mean and variance. Select a significance level (α), the maximum acceptable false positive rate. Common values are 5% and 1%. Compute from the observations the observed value t obs of the test statistic T.
Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.
Z tables use at least three different conventions: Cumulative from mean gives a probability that a statistic is between 0 (mean) and Z. Example: Prob(0 ≤ Z ≤ 0.69) = 0.2549. Cumulative gives a probability that a statistic is less than Z. This equates to the area of the distribution below Z. Example: Prob(Z ≤ 0.69) = 0.7549.