Search results
Results from the WOW.Com Content Network
Graphs of dynamic amplification factors vs non-dimensional rise time (t r /T) exist for standard loading functions (for an explanation of rise time, see time history analysis below). Hence the DAF for a given loading can be read from the graph, the static deflection can be easily calculated for simple structures and the dynamic deflection found.
These load factors are, roughly, a ratio of the theoretical design strength to the maximum load expected in service. They are developed to help achieve the desired level of reliability of a structure [6] based on probabilistic studies that take into account the load's originating cause, recurrence, distribution, and static or dynamic nature. [7]
In solid mechanics, quasistatic loading refers to loading where inertial effects are negligible. In other words, time and inertial force are irrelevant. [1] References
Dynamic loading is a mechanism by which a computer program can, at run time, load a library (or other binary) into memory, retrieve the addresses of functions and variables contained in the library, execute those functions or access those variables, and unload the library from memory.
Static load testing is an in situ type of load testing used in geotechnical investigation to determine the bearing capacity of deep foundations prior to the construction of a building. It differs from the statnamic load test and dynamic load testing in that the pressure applied to the pile is slower.
Dynamic load testing (or dynamic loading) is a method to assess a pile's bearing capacity by applying a dynamic load to the pile head (a falling mass) while recording acceleration and strain on the pile head. Dynamic load testing is a high strain dynamic test which can be applied after pile installation for concrete piles. For steel or timber ...
Dynamic stretches are done to warm up before a workout and static stretches are done to cool down. Stretching reduces injury risk, relieves sore muscles and increases flexibility.
Dynamic Amplification Factor (DAF) or Dynamic Increase Factor (DIF), is a dimensionless number which describes how many times the deflections or stresses should be multiplied to the deflections or stresses caused by the static loads when a dynamic load is applied on to a structure.