enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Min-conflicts algorithm - Wikipedia

    en.wikipedia.org/wiki/Min-conflicts_algorithm

    Repeat this process of conflicted variable selection and min-conflict value assignment until a solution is found or a pre-selected maximum number of iterations is reached. If a solution is not found the algorithm can be restarted with a different initial assignment. Because a constraint satisfaction problem can be interpreted as a local search ...

  3. Rosenbrock function - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_function

    Plot of the Rosenbrock function of two variables. Here =, =, and the minimum value of zero is at (,).. In mathematical optimization, the Rosenbrock function is a non-convex function, introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for optimization algorithms. [1]

  4. SAT solver - Wikipedia

    en.wikipedia.org/wiki/SAT_solver

    In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  6. OR-Tools - Wikipedia

    en.wikipedia.org/wiki/OR-Tools

    Google OR-Tools is a free and open-source software suite developed by Google for solving linear programming (LP), mixed integer programming (MIP), constraint programming (CP), vehicle routing (VRP), and related optimization problems. [3] OR-Tools is a set of components written in C++ but provides wrappers for Java, .NET and Python.

  7. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The sum of these values is an upper bound because the soft constraints cannot assume a higher value. It is exact because the maximal values of soft constraints may derive from different evaluations: a soft constraint may be maximal for x = a {\displaystyle x=a} while another constraint is maximal for x = b {\displaystyle x=b} .

  8. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    The advantage of the penalty method is that, once we have a penalized objective with no constraints, we can use any unconstrained optimization method to solve it. The disadvantage is that, as the penalty coefficient p grows, the unconstrained problem becomes ill-conditioned - the coefficients are very large, and this may cause numeric errors ...

  9. Gecode - Wikipedia

    en.wikipedia.org/wiki/Gecode

    Gecode (for Generic Constraint Development Environment) is a software library for solving Constraint satisfaction problems. It is programmed in C++ and distributed as free software under the permissive MIT license. Gecode has bindings for several programming languages such as Prolog, Python and Ruby, and an interface to the AMPL modeling language.