enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex A {\displaystyle A} is called the A {\displaystyle A} -mixtilinear incircle.

  3. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The center of the incircle is a triangle center called the triangle's incenter. [1] An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. [3]

  4. Conway circle theorem - Wikipedia

    en.wikipedia.org/wiki/Conway_circle_theorem

    Let I be the center of the incircle of triangle ABC, r its radius and F a, F b and F c the three points where the incircle touches the triangle sides a, b and c. Since the (extended) triangle sides are tangents of the incircle it follows that IF a, IF b and IF c are perpendicular to a, b and c.

  5. Law of cotangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_cotangents

    Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = ⁠ a + b + c / 2 ⁠, and r is the radius of the inscribed circle, the law of cotangents states that

  6. Nine-point circle - Wikipedia

    en.wikipedia.org/wiki/Nine-point_circle

    The nine-point circle is tangent to the incircle and excircles. In 1822 Karl Feuerbach discovered that any triangle's nine-point circle is externally tangent to that triangle's three excircles and internally tangent to its incircle; this result is known as Feuerbach's theorem. He proved that:

  7. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    Euler's theorem: = | | = In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  8. Soddy circles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Soddy_circles_of_a_triangle

    Each of the three circles centered at the vertices crosses two sides of the triangle at right angles, at one of the three intouch points of the triangle, where its incircle is tangent to the side. The two circles tangent to these three circles are separated by the incircle, one interior to it and one exterior.

  9. Incenter - Wikipedia

    en.wikipedia.org/wiki/Incenter

    The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.