Search results
Results from the WOW.Com Content Network
In thermodynamics, the compressibility factor (Z), also known as the compression factor or the gas deviation factor, describes the deviation of a real gas from ideal gas behaviour. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure .
Download as PDF; Printable version; ... The deviation from ideality can be described by the compressibility factor Z. Models ... Carbon dioxide, CO 2: 507.2836: 0 ...
The compressibility factor is a dimensionless quantity which is equal to 1 for ideal gases and deviates from unity for increasing levels of non-ideality. [ 9 ] Several non-ideal models exist, from the simplest cubic equations of state (such as the Van der Waals [ 4 ] [ 10 ] and the Peng-Robinson [ 11 ] models) up to complex multi-parameter ones ...
Toggle the table of contents. ... Print/export Download as PDF; ... , and denotes the compressibility factor. This leads to the result
The table below gives thermodynamic data of liquid CO 2 in equilibrium with its vapor at various temperatures. Heat content data, heat of vaporization, and entropy values are relative to the liquid state at 0 °C temperature and 3483 kPa pressure.
Toggle the table of contents. ... Print/export Download as PDF; ... where is the compressibility factor. Expanding the ...
The compressibility factor is defined as = where p is the pressure of the gas, T is its temperature, and is its molar volume, all measured independently of one another. In the case of an ideal gas, the compressibility factor Z is equal to unity, and the familiar ideal gas law is recovered:
The virial expansion is a model of thermodynamic equations of state.It expresses the pressure P of a gas in local equilibrium as a power series of the density.This equation may be represented in terms of the compressibility factor, Z, as = + + + This equation was first proposed by Kamerlingh Onnes. [1]