Search results
Results from the WOW.Com Content Network
Under this scenario, dark energy would ultimately tear apart all gravitationally bound structures, including galaxies and solar systems, and eventually overcome the electrical and nuclear forces to tear apart atoms themselves, ending the universe in a "Big Rip". On the other hand, dark energy might dissipate with time or even become attractive.
Since the 1990s, studies have shown that, assuming the cosmological principle, around 68% of the mass–energy density of the universe can be attributed to dark energy. [6] [7] [8] The cosmological constant Λ is the simplest possible explanation for dark energy, and is used in the standard model of cosmology known as the ΛCDM model.
Dark energy is one of the greatest mysteries in science today. One of the simplest explanations is that it is a “cosmological constant” – a result of the energy of empty space itself – an ...
The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [8] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3% (2018 estimate) of the mass–energy density ...
The physical nature of dark energy is at present unknown," Huterer said. The new findings appear to corroborate the current standard model of cosmology that includes the theory of general relativity.
[66] [90] There are very many theories in this category, for example, replacing general relativity with a modified theory of gravity could potentially resolve the tension, [91] [92] as can a dark energy component in the early universe, [b] [93] dark energy with a time-varying equation of state, [c] [94] or dark matter that decays into dark ...
To make that assumption work, astronomers have used the concept of dark energy. For a century, scientists have thought that the universe was expanding in all directions.
Although dark energy is currently the most popular explanation for the acceleration in the expansion of the universe, another theory elaborates on the possibility of our galaxy being part of a very large, not-so-underdense, cosmic void. According to this theory, such an environment could naively lead to the demand for dark energy to solve the ...