Search results
Results from the WOW.Com Content Network
A group of hikers encountering quicksand on the banks of the Paria River, Utah Quicksand warning sign near Lower King Bridge, Western Australia. Quicksand is a shear thinning non-Newtonian fluid: when undisturbed, it often appears to be solid ("gel" form), but a less than 1% change in the stress on the quicksand will cause a sudden decrease in its viscosity ("sol" form).
The Oceanic carbon cycle is a central process to the global carbon cycle and contains both inorganic carbon (carbon not associated with a living thing, such as carbon dioxide) and organic carbon (carbon that is, or has been, incorporated into a living thing). Part of the marine carbon cycle transforms carbon between non-living and living matter.
Carbon dioxide also dissolves directly from the atmosphere into bodies of water (ocean, lakes, etc.), as well as dissolving in precipitation as raindrops fall through the atmosphere. When dissolved in water, carbon dioxide reacts with water molecules and forms carbonic acid, which contributes to ocean acidity. It can then be absorbed by rocks ...
Upwelling mantle material can add to the crust at mid oceanic ridges. Fluids can extract carbon from the mantle and erupt in volcanoes. At 330 km deep a liquid consisting of carbon dioxide and water can form. It is highly corrosive, and dissolves incompatible elements from the solid mantle. These elements include uranium, thorium, potassium ...
The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon–oxygen bond in carbon dioxide is 116.3 pm, noticeably shorter than the roughly 140 pm length of a typical single C–O bond, and shorter than most other C–O multiply bonded functional groups such as carbonyls. [19]
The majority of known chemical cycles on Venus involve its dense atmosphere and compounds of carbon and sulphur, the most significant being a strong carbon dioxide cycle. [3] The lack of a complete carbon cycle including a geochemical carbon cycle, for example, is thought to be a cause of its runaway greenhouse effect, due to the lack of a ...
The primary mechanism for attaining such high CO 2 concentrations is the carbon cycle. On large timescales, the inorganic branch of the carbon cycle, which is known as the carbonate–silicate cycle is responsible for determining the partitioning of CO 2 between the atmosphere and the surface of Earth.
The carbonate-silicate cycle is the primary control on carbon dioxide levels over long timescales. [3] It can be seen as a branch of the carbon cycle, which also includes the organic carbon cycle, in which biological processes convert carbon dioxide and water into organic matter and oxygen via photosynthesis. [5]