Search results
Results from the WOW.Com Content Network
Of two isomers of butylbenzene, n-butylbenzene consists of a phenyl group attached to the 1 position of a butyl group. It is a slightly greasy, colorless liquid. The synthesis of n-butylbenzene by the reaction of chlorobenzene and butylmagnesium bromide was one of the first demonstrations of the Kumada coupling using nickel diphosphine ...
Biochemical reactions involving a single substrate are often assumed to follow Michaelis–Menten kinetics, without regard to the model's underlying assumptions. Only a small proportion of enzyme-catalysed reactions have just one substrate, but the equation still often applies if only one substrate concentration is varied.
N-tert-Butylbenzenesulfinimidoyl chloride is a useful oxidant for organic synthesis reactions. [1] It is a good electrophile, and the sulfimide S=N bond can be attacked by nucleophiles, such as alkoxides, enolates, and amide ions. The nitrogen atom in the resulting intermediate is basic, and can abstract an α-hydrogen to create a new double bond.
Crystalline potassium permanganate (KMnO 4) is placed in an evaporating dish. A depression is made at the center of the permanganate powder and glycerol liquid is added to it. The white smoke-like vapor produced by the reaction is a mixture of carbon dioxide gas and water vapor.
tert-Butylbenzene is an organic compound classified as an aromatic hydrocarbon. Its structure consists of a benzene ring substituted with a tert -butyl group . It is a flammable colorless liquid which is nearly insoluble in water but miscible with organic solvents.
In organic chemistry, the Baker–Nathan effect is observed with reaction rates for certain chemical reactions with certain substrates where the order in reactivity cannot be explained solely by an inductive effect of substituents. [1] This effect was described in 1935 by John W. Baker and W. S. Nathan.
Mechanochemistry (or mechanical chemistry) is the initiation of chemical reactions by mechanical phenomena. Mechanochemistry thus represents a fourth way to cause chemical reactions, complementing thermal reactions in fluids, photochemistry, and electrochemistry. Conventionally mechanochemistry focuses on the transformations of covalent bonds ...
The determining factor when both S N 2 and S N 1 reaction mechanisms are viable is the strength of the Nucleophile. Nuclephilicity and basicity are linked and the more nucleophilic a molecule becomes the greater said nucleophile's basicity. This increase in basicity causes problems for S N 2 reaction mechanisms when the solvent of choice is protic.