Search results
Results from the WOW.Com Content Network
Prophase II of meiosis is very similar to prophase of mitosis. The most noticeable difference is that prophase II occurs with a haploid number of chromosomes as opposed to the diploid number in mitotic prophase. [12] [10] In both animal and plant cells chromosomes may de-condense during telophase I requiring them to re-condense in prophase II.
These chromosomes (paired chromatids) then pair with the homologous chromosome (also paired chromatids) present in the same nucleus (see prophase I in the meiosis diagram). The process of alignment of paired homologous chromosomes is called synapsis (see Synapsis). During synapsis, genetic recombination usually occurs.
Meiotic sex chromosome inactivation only happens in male, which may partially be the reason why only Spo11 mutant spermatocytes but not oocytes fail to transition from prophase I to metaphase I. [3] [8] However the asynapsis does not happen only within sex chromosomes, and such transcription regulation was suspended until it was further ...
Prophase is the initial phase when spindle fibers appear that function to move the chromosomes toward opposite poles. This spindle apparatus consists of microtubules, microfilaments and a complex network of various proteins. During metaphase, the chromosomes line up using the spindle apparatus in the middle of the cell along the equatorial plate.
Chromosomal crossover, or crossing over, is the exchange of genetic material during sexual reproduction between two homologous chromosomes' non-sister chromatids that results in recombinant chromosomes. It is one of the final phases of genetic recombination, which occurs in the pachytene stage of prophase I of meiosis during a process called ...
Using different types of genetic studies, it has been established that diverse kinds of defects are able to activate the SAC: spindle depolymerization, [8] [9] the presence of dicentric chromosomes (with two centromeres), [10] centromeres segregating in an aberrant way, [11] defects in the spindle pole bodies in S. cerevisiae, [12] defects in ...
The pachytene stage of prophase I typically results in the formation of chiasmata between homologous non-sister chromatids in the tetrad chromosomes that form. [1] The formation of a chiasma is also referred to as crossing over. When two homologous chromatids cross over, they form a chiasma at the point of their intersection.
In eukaryotes, the cell cycle consists of four main stages: G 1, during which a cell is metabolically active and continuously grows; S phase, during which DNA replication takes place; G 2, during which cell growth continues and the cell synthesizes various proteins in preparation for division; and the M phase, during which the duplicated ...