Search results
Results from the WOW.Com Content Network
In computer science, modular arithmetic is often applied in bitwise operations and other operations involving fixed-width, cyclic data structures. The modulo operation, as implemented in many programming languages and calculators, is an application of modular arithmetic that is often used in this context. The logical operator XOR sums 2 bits ...
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, on some hardware, faster alternatives exist. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation (assuming x is a positive integer, or using a non-truncating definition):
Modulo 2, every integer is a quadratic residue. Modulo an odd prime number p there are (p + 1)/2 residues (including 0) and (p − 1)/2 nonresidues, by Euler's criterion.In this case, it is customary to consider 0 as a special case and work within the multiplicative group of nonzero elements of the field (/).
In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.
Roughly speaking, modular arithmetic modulo a positive integer n consists of "approximating" every integer by the remainder of its division by n, called its residue modulo n. The main property of modular arithmetic is that the residue modulo n of the result of a succession of operations on integers is the same as the result of the same ...
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ (n) elements, φ being Euler's totient function, and is denoted as U (n) or ...
Primitive root modulo n. Primitive root modulo. n. In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gk ≡ a (mod n). Such a value k is called the ...