enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Word2vec is a group of related models that are used to produce word embeddings. These models are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words. Word2vec takes as its input a large corpus of text and produces a vector space , typically of several hundred dimensions , with each unique word in the ...

  3. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    e. In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  4. Gensim - Wikipedia

    en.wikipedia.org/wiki/Gensim

    Website. radimrehurek.com /gensim /. Gensim is an open-source library for unsupervised topic modeling, document indexing, retrieval by similarity, and other natural language processing functionalities, using modern statistical machine learning. Gensim is implemented in Python and Cython for performance. Gensim is designed to handle large text ...

  5. fastText - Wikipedia

    en.wikipedia.org/wiki/FastText

    Website. fasttext.cc. fastText is a library for learning of word embeddings and text classification created by Facebook 's AI Research (FAIR) lab. [3][4][5][6] The model allows one to create an unsupervised learning or supervised learning algorithm for obtaining vector representations for words. Facebook makes available pretrained models for ...

  6. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    t. e. In natural language processing, a sentence embedding refers to a numeric representation of a sentence in the form of a vector of real numbers which encodes meaningful semantic information. [1][2][3][4][5][6][7] State of the art embeddings are based on the learned hidden layer representation of dedicated sentence transformer models.

  7. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    BERT (language model) Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. [1][2] It learns to represent text as a sequence of vectors using self-supervised learning. It uses the encoder-only transformer architecture.

  8. Biomedical text mining - Wikipedia

    en.wikipedia.org/wiki/Biomedical_text_mining

    Several groups have developed sets of biomedical vocabulary mapped to vectors of real numbers, known as word vectors or word embeddings. Sources of pre-trained embeddings specific for biomedical vocabulary are listed in the table below. The majority are results of the word2vec model developed by Mikolov et al [86] or variants of word2vec.

  9. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    In language modelling, ELMo (2018) was a bi-directional LSTM that produces contextualized word embeddings, improving upon the line of research from bag of words and word2vec. It was followed by BERT (2018), an encoder-only Transformer model. [33] In 2019 October, Google started using BERT to process search queries. [34]