enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fajans' rules - Wikipedia

    en.wikipedia.org/wiki/Fajans'_rules

    The "size" of the charge in an ionic bond depends on the number of electrons transferred. An aluminum atom, for example, with a +3 charge has a relatively large positive charge. That positive charge then exerts an attractive force on the electron cloud of the other ion, which has accepted the electrons from the aluminum (or other) positive ion.

  3. Plasma parameters - Wikipedia

    en.wikipedia.org/wiki/Plasma_parameters

    All quantities are in Gaussian units except energy and temperature which are in electronvolts.For the sake of simplicity, a single ionic species is assumed. The ion mass is expressed in units of the proton mass, = / and the ion charge in units of the elementary charge, = / (in the case of a fully ionized atom, equals to the respective atomic number).

  4. Ion - Wikipedia

    en.wikipedia.org/wiki/Ion

    Forming an ionic bond, Li and F become Li + and F − ions. An ion (/ ˈ aɪ. ɒ n,-ən /) [1] is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge ...

  5. Charge number - Wikipedia

    en.wikipedia.org/wiki/Charge_number

    Atomic numbers (Z) are a special case of charge numbers, referring to the charge number of an atomic nucleus, as opposed to the net charge of an atom or ion. The charge numbers for ions (and also subatomic particles ) are written in superscript, e.g., Na + is a sodium ion with charge number positive one (an electric charge of one elementary ...

  6. Ionic strength - Wikipedia

    en.wikipedia.org/wiki/Ionic_strength

    The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.

  7. Surface charge - Wikipedia

    en.wikipedia.org/wiki/Surface_charge

    The relation between C, the counter ion concentration at the surface, and , the counter ion concentration in the external solution, is the Boltzmann factor: = where z is the charge on the ion, e is the charge of a proton, k B is the Boltzmann constant and ψ is the potential of the charged surface.

  8. Ionic potential - Wikipedia

    en.wikipedia.org/wiki/Ionic_potential

    As such, this ratio is a measure of the charge density at the surface of the ion; usually the denser the charge, the stronger the bond formed by the ion with ions of opposite charge. [2] The ionic potential gives an indication of how strongly, or weakly, the ion will be electrostatically attracted by ions of opposite charge; and to what extent ...

  9. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential.