Search results
Results from the WOW.Com Content Network
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
Bettelheim et al. The nonmetals are distinguished based on the molecular structures of their most thermodynamically stable forms in ambient conditions. [5] Polyatomic nonmetals form structures or molecules in which each atom has two or three nearest neighbours (carbon: C x; phosphorus: P 4; sulfur: S 8; selenium: Se x); diatomic nonmetals form molecules in which each atom has one nearest ...
In 1802 the term "metalloids" was introduced for elements with the physical properties of metals but the chemical properties of non-metals. [194] However, in 1811, the Swedish chemist Berzelius used the term "metalloids" [ 195 ] to describe all nonmetallic elements, noting their ability to form negatively charged ions with oxygen in aqueous ...
Nonmetals show more variability in their properties than do metals. [1] Metalloids are included here since they behave predominately as chemically weak nonmetals.. Physically, they nearly all exist as diatomic or monatomic gases, or polyatomic solids having more substantial (open-packed) forms and relatively small atomic radii, unlike metals, which are nearly all solid and close-packed, and ...
An alternative in metallurgy is to consider various malleable alloys such as steel, aluminium alloys and similar as metals, and other materials as nonmetals; [20] fabricating metals is termed metalworking, [21] but there is no corresponding term for nonmetals. A loose definition such as this is often the common usage, but can also be inaccurate.
Periodic table of the chemical elements showing the most or more commonly named sets of elements (in periodic tables), and a traditional dividing line between metals and nonmetals. The f-block actually fits between groups 2 and 3 ; it is usually shown at the foot of the table to save horizontal space.
The dividing line between metals and nonmetals can be found, in varying configurations, on some representations of the periodic table of the elements (see mini-example, right). Elements to the lower left of the line generally display increasing metallic behaviour; elements to the upper right display increasing nonmetallic behaviour.
[40] [n 12] Metalloids may be grouped with metals; [77] or regarded as nonmetals; [78] or treated as a sub-category of nonmetals. [ 79 ] [ n 13 ] Other authors have suggested classifying some elements as metalloids "emphasizes that properties change gradually rather than abruptly as one moves across or down the periodic table". [ 81 ]