Search results
Results from the WOW.Com Content Network
After swap() is performed, x will contain the value 0 and y will contain 1; their values have been exchanged. This operation may be generalized to other types of values, such as strings and aggregated data types. Comparison sorts use swaps to change the positions of data. In many programming languages the swap function is built-in.
Is a generalisation of normal compare-and-swap. It can be used to atomically swap an arbitrary number of arbitrarily located memory locations. Usually, multi-word compare-and-swap is implemented in software using normal double-wide compare-and-swap operations. [16] The drawback of this approach is a lack of scalability. Persistent compare-and-swap
This is a list of the instructions that make up the Java bytecode, an abstract machine language that is ultimately executed by the Java virtual machine. [1] The Java bytecode is generated from languages running on the Java Platform, most notably the Java programming language.
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
A lock can be built using an atomic test-and-set [1] instruction as follows: This code assumes that the memory location was initialized to 0 at some point prior to the first test-and-set. The calling process obtains the lock if the old value was 0, otherwise the while-loop spins waiting to acquire the lock. This is called a spinlock. At any ...
In computer science, read–modify–write is a class of atomic operations (such as test-and-set, fetch-and-add, and compare-and-swap) that both read a memory location and write a new value into it simultaneously, either with a completely new value or some function of the previous value.
The reversal algorithm is the simplest to explain, using rotations. A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block ...
The simplest form goes through the whole list each time: procedure cocktailShakerSort(A : list of sortable items) is do swapped := false for each i in 0 to length(A) − 1 do: if A[i] > A[i + 1] then // test whether the two elements are in the wrong order swap(A[i], A[i + 1]) // let the two elements change places swapped := true end if end for if not swapped then // we can exit the outer loop ...