Search results
Results from the WOW.Com Content Network
The count trailing zeros operation would return 3, while the count leading zeros operation returns 16. The count leading zeros operation depends on the word size: if this 32-bit word were truncated to a 16-bit word, count leading zeros would return zero. The find first set operation would return 4, indicating the 4th position from the right.
The empty set is the unique initial object in Set, the category of sets. Every one-element set is a terminal object in this category; there are no zero objects. Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in this category.
Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]
The number 0 is represented by zero while null is a representation of an empty set {}. Hence in computer science a zero represents the outcome of a mathematical computation such as 2−2, while null is used for an undefined state (for example, a memory location that has not been explicitly initialised).
The null sign (∅) is often used in mathematics for denoting the empty set. The same letter in linguistics represents zero , the lack of an element. It is commonly used in phonology , morphology , and syntax .
Leading zeros are also present whenever the number of digits is fixed by the technical system (such as in a memory register), but the stored value is not large enough to result in a non-zero most significant digit. [7] The count leading zeros operation efficiently determines the number of leading zero bits in a machine word. [8]
In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notion of null set should not be confused with the empty set as defined in set theory.
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...