Search results
Results from the WOW.Com Content Network
In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (a tangent plane) to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer ...
Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for hyperbolic manifolds).
These equations taken together are as powerful and complete as Maxwell's equations. Moreover, the problem has been reduced somewhat, as the electric and magnetic fields together had six components to solve for. [1] In the potential formulation, there are only four components: the electric potential and the three components of the vector potential.
In mathematics, a solid Klein bottle is a three-dimensional topological space (a 3-manifold) whose boundary is the Klein bottle. [ 1 ] It is homeomorphic to the quotient space obtained by gluing the top disk of a cylinder D 2 × I {\displaystyle \scriptstyle D^{2}\times I} to the bottom disk by a reflection across a diameter of the disk.
There is a unique connected 0-dimensional manifold, namely the point, and disconnected 0-dimensional manifolds are just discrete sets, classified by cardinality. They have no geometry, and their study is combinatorics. A connected compact 1-dimensional manifold without boundary is homeomorphic (or diffeomorphic if it is smooth) to the circle.
Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...
For two dimensional manifolds a key invariant property is the genus, or "number of handles" present in a surface. A torus is a sphere with one handle, a double torus is a sphere with two handles, and so on. Indeed, it is possible to fully characterize compact, two-dimensional manifolds on the basis of genus and orientability.
A prism manifold is a closed 3-dimensional manifold M whose fundamental group is a central extension of a dihedral group. The fundamental group π 1 (M) of M is a product of a cyclic group of order m with a group having presentation , =, =