Search results
Results from the WOW.Com Content Network
Implicit trees (such as game trees or other problem-solving trees) may be of infinite size; breadth-first search is guaranteed to find a solution node [1] if one exists. In contrast, (plain) depth-first search (DFS), which explores the node branch as far as possible before backtracking and expanding other nodes, [ 2 ] may get lost in an ...
In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. K-dimensional is that which concerns exactly k orthogonal axes or a space of any number of dimensions. [1] k-d trees are a useful data structure for several applications, such as:
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
The simplest way to find a level ancestor of a node is to climb up the tree towards the root of the tree. On the path to the root of the tree, every ancestor of a node can be visited and therefore reported. In this case, the tree does not need to be preprocessed and the time to answer a query is O(h), where "h" is the height of the tree. This ...
Distributed tree search (DTS) algorithm is a class of algorithms for searching values in an efficient and distributed manner.Their purpose is to iterate through a tree by working along multiple branches in parallel and merging the results of each branch into one common solution, in order to minimize time spent searching for a value in a tree-like data structure.
Trees can be used to represent and manipulate various mathematical structures, such as: Paths through an arbitrary node-and-edge graph (including multigraphs), by making multiple nodes in the tree for each graph node used in multiple paths; Any mathematical hierarchy; Tree structures are often used for mapping the relationships between things ...
A link/cut tree is a data structure for representing a forest, a set of rooted trees, and offers the following operations: Add a tree consisting of a single node to the forest. Given a node in one of the trees, disconnect it (and its subtree) from the tree of which it is part. Attach a node to another node as its child.
A 1-dimensional range tree on a set of n points is a binary search tree, which can be constructed in () time. Range trees in higher dimensions are constructed recursively by constructing a balanced binary search tree on the first coordinate of the points, and then, for each vertex v in this tree, constructing a (d−1)-dimensional range tree on the points contained in the subtree of v.