Search results
Results from the WOW.Com Content Network
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
Implicit trees (such as game trees or other problem-solving trees) may be of infinite size; breadth-first search is guaranteed to find a solution node [1] if one exists. In contrast, (plain) depth-first search (DFS), which explores the node branch as far as possible before backtracking and expanding other nodes, [ 2 ] may get lost in an ...
The pre-order traversal goes to parent, left subtree and the right subtree, and for traversing post-order it goes by left subtree, right subtree, and parent node. For traversing in-order, since there are more than two children per node for m > 2 , one must define the notion of left and right subtrees.
A universal traversal sequence is a sequence of instructions comprising a graph traversal for any regular graph with a set number of vertices and for any starting vertex. A probabilistic proof was used by Aleliunas et al. to show that there exists a universal traversal sequence with number of instructions proportional to O ( n 5 ) for any ...
"A binary tree is threaded by making all right child pointers that would normally be null point to the in-order successor of the node (if it exists), and all left child pointers that would normally be null point to the in-order predecessor of the node." [1] This assumes the traversal order is the same as in-order traversal of the tree. However ...
In pre-order, we always visit the current node; next, we recursively traverse the current node's left subtree, and then we recursively traverse the current node's right subtree. The pre-order traversal is a topologically sorted one, because a parent node is processed before any of its child nodes is done.
A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly than the number of elements.
An abstract syntax tree (AST) is a data structure used in computer science to represent the structure of a program or code snippet. It is a tree representation of the abstract syntactic structure of text (often source code) written in a formal language. Each node of the tree denotes a construct occurring in the text.