enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lithium imide - Wikipedia

    en.wikipedia.org/wiki/Lithium_imide

    Lithium imide is an inorganic compound with the chemical formula Li 2 N H. This white solid can be formed by a reaction between lithium amide and lithium hydride. [1] LiNH 2 + LiH → Li 2 NH + H 2. The product is light-sensitive and can undergo disproportionation to lithium amide and characteristically red lithium nitride. 2 Li 2 NH → LiNH 2 ...

  3. Inorganic imide - Wikipedia

    en.wikipedia.org/wiki/Inorganic_imide

    Heating lithium amide with lithium hydride yields lithium imide and hydrogen gas. This reaction takes place as released ammonia reacts with lithium hydride. [2] Heating magnesium amide to about 400 °C yields magnesium imide with the loss of ammonia. Magnesium imide itself decomposes if heated between 455 and 490 °C. [6]

  4. Imide - Wikipedia

    en.wikipedia.org/wiki/Imide

    The result is a condensation reaction: [5] (RCO) 2 O + R′NH 2 → (RCO) 2 NR′ + H 2 O. These reactions proceed via the intermediacy of amides. The intramolecular reaction of a carboxylic acid with an amide is far faster than the intermolecular reaction, which is rarely observed.

  5. Lithium amide - Wikipedia

    en.wikipedia.org/wiki/Lithium_amide

    Lithium amide or lithium azanide is an inorganic compound with the chemical formula LiNH 2. It is a white solid with a tetragonal crystal structure. [1] Lithium amide can be made by treating lithium metal with liquid ammonia: [2] 2 Li + 2 NH 3 → 2 LiNH 2 + H 2. Lithium amide decomposes into ammonia and lithium imide upon heating. [3]

  6. Category:Lithium compounds - Wikipedia

    en.wikipedia.org/wiki/Category:Lithium_compounds

    Lithium is a highly reactive alkali metal that is widely used in various industrial applications due to its unique properties. Lithium compounds are formed by combining lithium with other elements, such as oxygen, sulfur, and chlorine, to form different chemical compounds.

  7. Lithium oxide - Wikipedia

    en.wikipedia.org/wiki/Lithium_oxide

    Burning lithium metal produces lithium oxide. Lithium oxide forms along with small amounts of lithium peroxide when lithium metal is burned in the air and combines with oxygen at temperatures above 100 °C: [3] 4Li + O 2 → 2 Li 2 O. Pure Li 2 O can be produced by the thermal decomposition of lithium peroxide, Li 2 O 2, at 450 °C [3] [2] 2 Li ...

  8. Lithium bis(trifluoromethanesulfonyl)imide - Wikipedia

    en.wikipedia.org/wiki/Lithium_bis(trifluorome...

    It is commonly used as Li-ion source in electrolytes for Li-ion batteries as a safer alternative to commonly used lithium hexafluorophosphate. [3] It is made up of one Li cation and a bistriflimide anion.

  9. Metal–halogen exchange - Wikipedia

    en.wikipedia.org/wiki/Metal–halogen_exchange

    An intramolecular S N 2 reaction by the anion forms the cyclic backbone of morphine. [14] Synthesis of morphine using lithium–halogen exchange. Lithium–halogen exchange is a crucial part of Parham cyclization. [15] In this reaction, an aryl halide (usually iodide or bromide) exchanges with organolithium to form a lithiated arene species.