Search results
Results from the WOW.Com Content Network
Structure of a rare monomeric boron hydride, R = i-Pr. [4] The most-studied class of organoboron compounds has the formula BR n H 3−n. These compounds are catalysts, reagents, and synthetic intermediates. The trialkyl and triaryl derivatives feature a trigonal-planar boron center that is typically only weakly Lewis acidic.
The [BAr F 4] − anion with four fluorinated aryl groups distributed tetrahedrally about a central boron atom. Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate is an anion with chemical formula [{3,5-(CF 3) 2 C 6 H 3} 4 B] −, which is commonly abbreviated as [BAr F 4] −, indicating the presence of fluorinated aryl (Ar F) groups.
In the US, a team led by Schlesinger developed the basic chemistry of the anionic boron hydrides and the related aluminium hydrides. Schlesinger's work laid the foundation for a host of boron hydride reagents for organic synthesis, most of which were developed by his student Herbert C. Brown. Borane-based reagents are now widely used in organic ...
The boron atom of a boronic ester or acid is sp 2 hybridized possessing a vacant p orbital, enabling these groups to act as Lewis acids. The C–B bond of boronic acids and esters are slightly longer than typical C–C single bonds with a range of 1.55-1.59 Å.
Triethylborane is strongly pyrophoric, with an autoignition temperature of −20 °C (−4 °F), [13] burning with an apple-green flame characteristic for boron compounds. Thus, it is typically handled and stored using air-free techniques.
It is a useful reagent in organic synthesis, as a precursor to boronic acids, which are used in Suzuki couplings. These boronic acids are prepared via reaction of the trimethyl borate with Grignard reagents followed by hydrolysis:. [3] [4] ArMgBr + B(OCH 3) 3 → MgBrOCH 3 + ArB(OCH 3) 2 ArB(OCH 3) 2 + 2 H 2 O → ArB(OH) 2 + 2 HOCH 3
Nickel boride is the common name of materials composed chiefly of the elements nickel and boron that are widely used as catalysts in organic chemistry. [1] [2] Their approximate chemical composition is Ni 2.5 B, [3] and they are often incorrectly denoted "Ni 2 B" in organic chemistry publications.
The boron reagent is converted to boric acid. The reaction was originally described by H.C. Brown in 1957 for the conversion of 1-hexene into 1-hexanol. [3] Hexanol synthesis. Knowing that the group containing the boron will be replaced by a hydroxyl group, it can be seen that the initial hydroboration step determines the regioselectivity.