Search results
Results from the WOW.Com Content Network
A nitrogen generator Bottle of 4Å molecular sieves. Pressure swing adsorption provides separation of oxygen or nitrogen from air without liquefaction. The process operates around ambient temperature; a zeolite (molecular sponge) is exposed to high pressure air, then the air is released and an adsorbed film of the desired gas is released.
A cryogenic gas plant is an industrial facility that creates molecular oxygen, molecular nitrogen, argon, krypton, helium, and xenon at relatively high purity. [1] As air is made up of nitrogen, the most common gas in the atmosphere, at 78%, with oxygen at 19%, and argon at 1%, with trace gasses making up the rest, cryogenic gas plants separate air inside a distillation column at cryogenic ...
Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures.Liquid helium may show superfluidity.. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temperature of −269 °C (−452.20 °F; 4.15 K).
Under vacuum, an equilibrium between the content of moisture and air (solved gases) in the liquid and gaseous phase is achieved. The equilibrium depends on the temperature and the residual pressure. The lower that pressure, the faster and more efficiently are water and gas removed.
Rapid pressure swing adsorption, or RPSA, is frequently used in portable oxygen concentrators. It allows a large reduction in the size of the adsorbent bed when high purity is not essential and when the feed gas (air) can be discarded. [7] It works by quickly cycling the pressure while alternately venting opposite ends of the column at the same ...
In an incident in 2006 at Texas A&M University, the pressure-relief devices of a tank of liquid nitrogen were sealed with brass plugs. As a result, the tank failed catastrophically and exploded. [3] Secondly, if a dewar is left open to the air for extended periods, atmospheric chemicals can condense or freeze on contact with the cryogenic material.
Gas blending for scuba diving is the filling of diving cylinders with non-air breathing gases such as nitrox, trimix and heliox. Use of these gases is generally intended to improve overall safety of the planned dive, by reducing the risk of decompression sickness and/or nitrogen narcosis , and may improve ease of breathing .
Larger amounts are supplied in metal tanks similar to gas cylinders, designed so a needle can fit through the valve opening. A syringe, carefully dried and flushed of air with an inert gas, is used to extract the liquid from its container. When working with pyrophoric solids, researchers often employ a sealed glove box flushed with inert gas.