enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spectrum of a C*-algebra - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_C*-algebra

    In mathematics, the spectrum of a C*-algebra or dual of a C*-algebra A, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A.A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with x ∈ A.

  3. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    In mathematics, the spectrum of a matrix is the set of its eigenvalues. [ 1 ] [ 2 ] [ 3 ] More generally, if T : V → V {\displaystyle T\colon V\to V} is a linear operator on any finite-dimensional vector space , its spectrum is the set of scalars λ {\displaystyle \lambda } such that T − λ I {\displaystyle T-\lambda I} is not invertible .

  4. Spectral theory of normal C*-algebras - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory_of_normal...

    Throughout, is a fixed Hilbert space. A projection-valued measure on a measurable space (,), where is a σ-algebra of subsets of , is a mapping: such that for all , is a self-adjoint projection on (that is, () is a bounded linear operator (): that satisfies () = and () = ()) such that = (where is the identity operator of ) and for every ,, the function defined by (), is a complex measure on ...

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The spectrum of a matrix is the list of eigenvalues, repeated according to multiplicity; in an alternative notation the set of eigenvalues with their multiplicities. An important quantity associated with the spectrum is the maximum absolute value of any eigenvalue. This is known as the spectral radius of the matrix.

  6. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    The spectrum of T is the set of all complex numbers ζ such that R ζ fails to exist or is unbounded. Often the spectrum of T is denoted by σ(T). The function R ζ for all ζ in ρ(T) (that is, wherever R ζ exists as a bounded operator) is called the resolvent of T. The spectrum of T is therefore the complement of the resolvent set of T in ...

  7. Spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(functional_analysis)

    The real spectrum of a continuous linear operator acting on a real Banach space , denoted (), is defined as the set of all for which fails to be invertible in the real algebra of bounded linear operators acting on .

  8. Spectral theorem - Wikipedia

    en.wikipedia.org/wiki/Spectral_theorem

    In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the ...

  9. Decomposition of spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_spectrum...

    The spectrum of T restricted to H ac is called the absolutely continuous spectrum of T, σ ac (T). The spectrum of T restricted to H sc is called its singular spectrum, σ sc (T). The set of eigenvalues of T is called the pure point spectrum of T, σ pp (T). The closure of the eigenvalues is the spectrum of T restricted to H pp.