enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    As a result, the method of Lagrange multipliers is widely used to solve challenging constrained optimization problems. Further, the method of Lagrange multipliers is generalized by the Karush–Kuhn–Tucker conditions , which can also take into account inequality constraints of the form h ( x ) ≤ c {\displaystyle h(\mathbf {x} )\leq c} for a ...

  3. Augmented Lagrangian method - Wikipedia

    en.wikipedia.org/wiki/Augmented_Lagrangian_method

    Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.

  4. Constraint (computational chemistry) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(computational...

    A third approach is to use a method such as Lagrange multipliers or projection to the constraint manifold to determine the coordinate adjustments necessary to satisfy the constraints. Finally, there are various hybrid approaches in which different sets of constraints are satisfied by different methods, e.g., internal coordinates, explicit ...

  5. Lagrangian relaxation - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_relaxation

    The method penalizes violations of inequality constraints using a Lagrange multiplier, which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization. In practice, this relaxed problem can often be solved more easily than the original problem.

  6. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    where is a Lagrange multiplier or adjoint state variable and , is an inner product on . The method of Lagrange multipliers states that a solution to the problem has to be a stationary point of the lagrangian, namely

  7. Lagrange multipliers on Banach spaces - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multipliers_on...

    In the field of calculus of variations in mathematics, the method of Lagrange multipliers on Banach spaces can be used to solve certain infinite-dimensional constrained optimization problems. The method is a generalization of the classical method of Lagrange multipliers as used to find extrema of a function of finitely many variables.

  8. Active-set method - Wikipedia

    en.wikipedia.org/wiki/Active-set_method

    solve the equality problem defined by the active set (approximately) compute the Lagrange multipliers of the active set remove a subset of the constraints with negative Lagrange multipliers search for infeasible constraints end repeat. Methods that can be described as active-set methods include: [1] Successive linear programming (SLP)

  9. Hamiltonian (control theory) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(control_theory)

    where () compares to the Lagrange multiplier in a static optimization problem but is now, as noted above, a function of time. In order to eliminate x ˙ ( t ) {\displaystyle {\dot {\mathbf {x} }}(t)} , the last term on the right-hand side can be rewritten using integration by parts , such that