enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    Suppose that two lines have the equations y = ax + c and y = bx + d where a and b are the slopes (gradients) of the lines and where c and d are the y-intercepts of the lines. At the point where the two lines intersect (if they do), both y coordinates will be the same, hence the following equality: + = +.

  3. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...

  4. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]

  5. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    For each pair of lines, there can be only one cell where the two lines meet at the bottom vertex, so the number of downward-bounded cells is at most the number of pairs of lines, () /. Adding the unbounded and bounded cells, the total number of cells in an arrangement can be at most n ( n + 1 ) / 2 + 1 {\displaystyle n(n+1)/2+1} . [ 5 ]

  6. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    Lines that meet at the same point are said to be concurrent. The set of all lines in a plane incident with the same point is called a pencil of lines centered at that point. The computation of the intersection of two lines shows that the entire pencil of lines centered at a point is determined by any two of the lines that intersect at that point.

  7. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    But only a tangent line is perpendicular to the radial line. Hence, the two lines from P and passing through T 1 and T 2 are tangent to the circle C. Another method to construct the tangent lines to a point P external to the circle using only a straightedge: Draw any three different lines through the given point P that intersect the circle twice.

  8. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    Suppose S is the common starting point of two rays, and two parallel lines are intersecting those two rays (see figure). Let A, B be the intersections of the first ray with the two parallels, such that B is further away from S than A, and similarly C, D are the intersections of the second ray with the two parallels such that D is further away ...

  9. Line coordinates - Wikipedia

    en.wikipedia.org/wiki/Line_coordinates

    A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).