enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nash equilibrium - Wikipedia

    en.wikipedia.org/wiki/Nash_equilibrium

    The subgame perfect equilibrium in addition to the Nash equilibrium requires that the strategy also is a Nash equilibrium in every subgame of that game. This eliminates all non-credible threats , that is, strategies that contain non-rational moves in order to make the counter-player change their strategy.

  3. Bimatrix game - Wikipedia

    en.wikipedia.org/wiki/Bimatrix_game

    Every bimatrix game has a Nash equilibrium in (possibly) mixed strategies. Finding such a Nash equilibrium is a special case of the Linear complementarity problem and can be done in finite time by the Lemke–Howson algorithm. [1] There is a reduction from the problem of finding a Nash equilibrium in a bimatrix game to the problem of finding a ...

  4. Battle of the sexes (game theory) - Wikipedia

    en.wikipedia.org/wiki/Battle_of_the_sexes_(game...

    The mixed strategy Nash equilibrium is inefficient: the players will miscoordinate with probability 13/25, leaving each player with an expected return of 6/5 (less than the payoff of 2 from each's less favored pure strategy equilibrium). It remains unclear how expectations would form that would result in a particular equilibrium being played out.

  5. Symmetric game - Wikipedia

    en.wikipedia.org/wiki/Symmetric_game

    Nash (1951) shows that every finite symmetric game has a symmetric mixed strategy Nash equilibrium. Cheng et al. (2004) show that every two-strategy symmetric game has a (not necessarily symmetric) pure strategy Nash equilibrium. Emmons et al. (2022) show that in every common-payoff game (a.k.a. team game) (that is, every game in which all ...

  6. Strategy (game theory) - Wikipedia

    en.wikipedia.org/wiki/Strategy_(game_theory)

    In his famous paper, John Forbes Nash proved that there is an equilibrium for every finite game. One can divide Nash equilibria into two types. Pure strategy Nash equilibria are Nash equilibria where all players are playing pure strategies. Mixed strategy Nash equilibria are equilibria where at least one player is playing a mixed strategy ...

  7. Trembling hand perfect equilibrium - Wikipedia

    en.wikipedia.org/wiki/Trembling_hand_perfect...

    In game theory, trembling hand perfect equilibrium is a type of refinement of a Nash equilibrium that was first proposed by Reinhard Selten. [1] A trembling hand perfect equilibrium is an equilibrium that takes the possibility of off-the-equilibrium play into account by assuming that the players, through a "slip of the hand" or tremble, may choose unintended strategies, albeit with negligible ...

  8. Fictitious play - Wikipedia

    en.wikipedia.org/wiki/Fictitious_play

    Brown first introduced fictitious play as an explanation for Nash equilibrium play. He imagined that a player would "simulate" play of the game in their mind and update their future play based on this simulation; hence the name fictitious play. In terms of current use, the name is a bit of a misnomer, since each play of the game actually occurs.

  9. Lemke–Howson algorithm - Wikipedia

    en.wikipedia.org/wiki/Lemke–Howson_algorithm

    The Lemke–Howson algorithm is an algorithm that computes a Nash equilibrium of a bimatrix game, named after its inventors, Carlton E. Lemke and J. T. Howson. [1] It is said to be "the best known among the combinatorial algorithms for finding a Nash equilibrium", [2] although more recently the Porter-Nudelman-Shoham algorithm [3] has outperformed on a number of benchmarks.