Search results
Results from the WOW.Com Content Network
[1] [2] Not all electromagnets use cores, so this is called a ferromagnetic-core or iron-core electromagnet. This phenomenon occurs because the magnetic core's material (often iron or steel) is composed of small regions called magnetic domains that act like tiny magnets (see ferromagnetism). Before the current in the electromagnet is turned on ...
In practical use, the number of laminations or punchings ranges from 40 to 66 per inch (16 to 26 per centimetre), and brings the eddy current loss down to about one percent. While the plates can be separated by insulation, the voltage is so low that the natural rust/oxide coating of the plates is enough to prevent current flow across the ...
Electricity is a very convenient way to transfer energy, and it has been adapted to a huge, and growing, number of uses. [75] The invention of a practical incandescent light bulb in the 1870s led to lighting becoming one of the first publicly available applications of
Uses for electromagnets include particle accelerators, electric motors, junkyard cranes, and magnetic resonance imaging machines. Some applications involve configurations more than a simple magnetic dipole; for example, quadrupole and sextupole magnets are used to focus particle beams .
Although the idea of making electromagnets with superconducting wire was proposed by Heike Kamerlingh Onnes shortly after he discovered superconductivity in 1911, a practical superconducting electromagnet had to await the discovery of superconducting materials that could support large critical supercurrent densities in high magnetic fields.
A simple electromagnet, consisting of an insulated wire wound around an iron core. An electric current passing through the wire creates a Magnetic field, with a north pole at one end and a south pole at the other. The first application of electricity that was put to practical use was electromagnetism. [18]
Particle accelerators such as the Large Hadron Collider can include many high field electromagnets requiring large quantities of LTS. To construct the LHC magnets required more than 28 percent of the world's niobium-titanium wire production for five years, with large quantities of NbTi also used in the magnets for the LHC's huge experiment detectors.
Permanent magnets can be described without reference to electricity or electromagnetism. Circuit theory deals with electrical networks where the fields are largely confined around current carrying conductors. In such circuits, even Maxwell's equations can be dispensed with and simpler formulations used.