enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    Activation energy can be thought of as the magnitude of the potential barrier (sometimes called the energy barrier) separating minima of the potential energy surface pertaining to the initial and final thermodynamic state. For a chemical reaction to proceed at a reasonable rate, the temperature of the system should be high enough such that ...

  3. Activated complex - Wikipedia

    en.wikipedia.org/wiki/Activated_complex

    The activation energy is the minimum amount of energy to initiate a chemical reaction and form the activated complex. [6] The energy serves as a threshold that reactant molecules must surpass to overcome the energy barrier and transition into the activated complex.

  4. Activation - Wikipedia

    en.wikipedia.org/wiki/Activation

    The energy of activation [1] specifies the amount of free energy the reactants must possess (in addition to their rest energy) in order to initiate their conversion into corresponding products—that is, in order to reach the transition state for the reaction. The energy needed for activation can be quite small, and often it is provided by the ...

  5. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  6. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    The free energy of activation, ΔG ‡, is defined in transition state theory to be the energy such that ‡ = ⁡ ‡ ′ holds. The parameters ΔH ‡ and ΔS ‡ can then be inferred by determining ΔG ‡ = ΔH ‡ – TΔS ‡ at different temperatures.

  7. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.

  8. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    For any reaction to proceed, the starting material must have enough energy to cross over an energy barrier. This energy barrier is known as activation energy (∆G ≠) and the rate of reaction is dependent on the height of this barrier. A low energy barrier corresponds to a fast reaction and high energy barrier corresponds to a slow reaction.

  9. Collision theory - Wikipedia

    en.wikipedia.org/wiki/Collision_theory

    The activation energy is often predicted using the Transition state theory. Increasing the concentration of the reactant brings about more collisions and hence more successful collisions. Increasing the temperature increases the average kinetic energy of the molecules in a solution, increasing the number of collisions that have enough energy.