enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the JouleKelvin effect or KelvinJoule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  3. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    The SI unit for heat capacity of an object is joule per kelvin (J/K or J⋅K −1). Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same unit as J/°C. The heat capacity of an object is an amount of energy divided by a temperature change, which has the dimension L 2 ⋅M⋅T −2 ...

  4. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol −1 ⋅K −1 = 3 R per mole of atoms (see the last column of this table).

  5. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    The SI unit for specific heat capacity is joule per kelvin per kilogram ⁠ J / kg⋅K ⁠, J⋅K −1 ⋅kg −1. Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same as joule per degree Celsius per kilogram: J/(kg⋅°C).

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the Joule–Thomson effect. For reference, the Joule–Thomson coefficient μ JT for air at room temperature and sea level is 0.22 °C/bar. [7]

  7. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10-23 J K-1.The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).

  8. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    The Thomson coefficient is unique among the three main thermoelectric coefficients because it is the only one directly measurable for individual materials. The Peltier and Seebeck coefficients can only be easily determined for pairs of materials; hence, it is difficult to find values of absolute Seebeck or Peltier coefficients for an individual ...

  9. Inversion temperature - Wikipedia

    en.wikipedia.org/wiki/Inversion_temperature

    This temperature change is known as the Joule–Thomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as