Search results
Results from the WOW.Com Content Network
In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold ...
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
An oriented -dimensional Riemannian manifold (,) has a unique -form called the Riemannian volume form. [7] The Riemannian volume form is preserved by orientation-preserving isometries. [8] The volume form gives rise to a measure on which allows measurable functions to be integrated. [citation needed] If is compact, the volume of is . [7]
The special case of the first variation formula arising when S is an interval on the real number line is particularly well-known. In this context, the volume functional is known as the length functional and its variational analysis is fundamental to the study of geodesics in Riemannian geometry.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
If M is not oriented, then the above calculation carries through exactly as presented, except that the volume form must instead be replaced by a volume element (a density rather than a form). Neither the gradient nor the divergence actually depends on the choice of orientation, and so the Laplace–Beltrami operator itself does not depend on ...
Parallel transport in the frame bundle amounts to lifting a path from SO(3)/SO(2) to SO(3). It can be accomplished by directly solving a matrix-valued ordinary differential equation ("transport equation") of the form g t = A · g where A(t) is skew-symmetric and g takes values in SO(3). [52] [53] [54]
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations.The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric.