Search results
Results from the WOW.Com Content Network
In DNA double helix, the two strands of DNA are held together by hydrogen bonds. The nucleotides on one strand base pairs with the nucleotide on the other strand. The secondary structure is responsible for the shape that the nucleic acid assumes. The bases in the DNA are classified as purines and pyrimidines. The purines are adenine and guanine ...
DNA with high GC-content is more stable than DNA with low GC-content. A Hoogsteen base pair (hydrogen bonding the 6-carbon ring to the 5-carbon ring) is a rare variation of base-pairing. [26] As hydrogen bonds are not covalent, they can be broken and rejoined relatively easily.
DNA is a macromolecule made up of nucleotide units, which are linked by covalent bonds and hydrogen bonds, in a repeating structure. DNA synthesis occurs when these nucleotide units are joined to form DNA; this can occur artificially (in vitro) or naturally (in vivo). Nucleotide units are made up of a nitrogenous base (cytosine, guanine ...
The structure of DNA-protein complexes can be mapped by photocrosslinking, which is the photoinduced formation of a covalent bond between two macromolecules or between two different parts of one macromolecule. The methodology involves covalently linking a DNA-binding motif of the target sequence-specific DNA-binding protein with a ...
The chemical structure of DNA base-pairs . A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds.
A covalent bond forming H 2 (right) where two hydrogen atoms share the two electrons. A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms.
The base complement A = T shares two hydrogen bonds, while the base pair G ≡ C has three hydrogen bonds. All other configurations between nucleobases would hinder double helix formation. DNA strands are oriented in opposite directions, they are said to be antiparallel. [1]
The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T and C:G pairs ...