Search results
Results from the WOW.Com Content Network
A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.
Mercury (as methylmercury) in the body has a half-life of about 65 days. Lead in the blood has a half life of 28–36 days. [29] [30] Lead in bone has a biological half-life of about ten years. Cadmium in bone has a biological half-life of about 30 years. Plutonium in bone has a biological half-life of about 100 years.
Half time is the time taken by a quantity to reach one half of its extremal value, where the rate of change is proportional to the difference between the present value and the extremal value (i.e. in exponential decay processes). It is synonymous with half-life, but used in slightly different contexts.
The above equation makes clear the relationship between mass removal and clearance. It states that (with a constant mass generation) the concentration and clearance vary inversely with one another. If applied to creatinine (i.e. creatinine clearance ), it follows from the equation that if the serum creatinine doubles the clearance halves and ...
Derivation of equations that describe the time course of change for a system with zero-order input and first-order elimination are presented in the articles Exponential decay and Biological half-life, and in scientific literature. [1] [7] = C t is concentration after time t
Particle decay is a Poisson process, and hence the probability that a particle survives for time t before decaying (the survival function) is given by an exponential distribution whose time constant depends on the particle's velocity:
Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]