Search results
Results from the WOW.Com Content Network
Hypercapnia (from the Greek hyper, "above" or "too much" and kapnos, "smoke"), also known as hypercarbia and CO 2 retention, is a condition of abnormally elevated carbon dioxide (CO 2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs.
The ratio of carboxyhemoglobin to hemoglobin molecules in an average person may be up to 5%, although cigarette smokers who smoke two packs per day may have levels up to 9%. [104] In symptomatic poisoned people they are often in the 10–30% range, while persons who die may have postmortem blood levels of 30–90%. [105] [106]
Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as ...
Many people with chronic obstructive pulmonary disease have a low partial pressure of oxygen in the blood and high partial pressure of carbon dioxide.Treatment with supplemental oxygen may improve their well-being; alternatively, in some this can lead to the adverse effect of elevating the carbon dioxide content in the blood (hypercapnia) to levels that may become toxic.
Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction ...
k H CO 2 is a constant including the solubility of carbon dioxide in blood. k H CO 2 is approximately 0.03 (mmol/L)/mmHg; p CO 2 is the partial pressure of carbon dioxide in the blood; Combining these equations results in the following equation relating the pH of blood to the concentration of bicarbonate and the partial pressure of carbon ...
Carbon dioxide is a by-product of food metabolism and in high amounts has toxic effects including: dyspnea, acidosis and altered consciousness. [8] Arterial blood carbon dioxide tension. P a CO 2 – Partial pressure of carbon dioxide at sea level in arterial blood is between 35 and 45 mmHg (4.7 and 6.0 kPa). [9] Venous blood carbon dioxide tension
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”