Search results
Results from the WOW.Com Content Network
Gamma double prime (γ"): This phase typically is Ni 3 Nb or Ni 3 V and is used to strengthen Ni-based superalloys at lower temperatures (<650 °C) relative to γ'. The crystal structure of γ" is body-centered tetragonal (BCT), and the phase precipitates as 60 nm by 10 nm discs with the (001) planes in γ" parallel to the {001} family in γ.
In age-hardening or precipitation-strengthening varieties, small amounts of niobium combine with nickel to form the intermetallic compound Ni 3 Nb or gamma double prime (γ″). Gamma prime forms small cubic crystals that inhibit slip and creep effectively at elevated temperatures. The formation of gamma-prime crystals increases over time ...
The nucleus also carried most of the atom's mass. This meant that it could deflect alpha particles by up to 180° depending on how close they pass. The electrons surround this nucleus, spread throughout the atom's volume. Because their negative charge is diffuse and their combined mass is low, they have a negligible effect on the alpha particle ...
In these alloys the volume fraction of the γ' precipitates is as high as 80%. [7] Because of this high volume fraction, the evolution of these γ' precipitates during the alloys' life cycles is important: a major concern is the coarsening of these γ' precipitates at high temperature (800 to 1000 °C), which greatly reduces the alloys ...
Ostwald ripening is also the key process in the digestion and aging of precipitates, an important step in gravimetric analysis. The digested precipitate is generally purer, and easier to wash and filter. Ostwald ripening can also occur in emulsion systems, with molecules diffusing from small droplets to large ones through the continuous phase.
According to Thomson's model, all of the alpha particles should have passed through with negligible deflection. Rutherford deduced that the positive charge of the atom is not distributed throughout the atom's volume as Thomson believed, but is concentrated in a tiny nucleus at the center. This nucleus also carries most of the atom's mass.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In this case a new Majorana mass term is added to the Yukawa sector: = (¯ + ¯) where C denotes a charge conjugated (i.e. anti-) particle, and the terms are consistently all left (or all right) chirality (note that a left-chirality projection of an antiparticle is a right-handed field; care must be taken here due to different notations ...