enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.

  3. Mean absolute error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_error

    MAE is calculated as the sum of absolute errors (i.e., the Manhattan distance) divided by the sample size: [1] = = | | = = | |. It is thus an arithmetic average of the absolute errors | e i | = | y i − x i | {\displaystyle |e_{i}|=|y_{i}-x_{i}|} , where y i {\displaystyle y_{i}} is the prediction and x i {\displaystyle x_{i}} the true value.

  4. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    Permanent link; Page information; ... Non-linear least squares; Least absolute deviations; Curve fitting; ... Errors and residuals in statistics;

  5. Least absolute deviation - Wikipedia

    en.wikipedia.org/?title=Least_absolute_deviation&...

    What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code

  6. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    However, the advantage of the robust approach comes to light when the estimates of residual scale are considered. For ordinary least squares, the estimate of scale is 0.420, compared to 0.373 for the robust method. Thus, the relative efficiency of ordinary least squares to MM-estimation in this example is 1.266.

  7. Approximation error - Wikipedia

    en.wikipedia.org/wiki/Approximation_error

    Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)

  8. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  9. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).