Ad
related to: diode problem solving
Search results
Results from the WOW.Com Content Network
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
Various semiconductor diodes. Left: A four-diode bridge rectifier.Next to it is a 1N4148 signal diode.On the far right is a Zener diode.In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting.
Principles of Electronics is a 2002 book by Colin Simpson designed to accompany the Electronics Technician distance education program and contains a concise and practical overview of the basic principles, including theorems, circuit behavior and problem-solving procedures of Electronic circuits and devices.
The transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this formula is rarely used in network analysis, a piecewise approximation being used instead. It can be seen that the diode current rapidly diminishes to -I o as the voltage falls. This current, for most purposes, is so small it can be ignored.
The characteristic curve (curved line), representing the current I through the diode for any given voltage across the diode V D, is an exponential curve. The load line (diagonal line) , representing the relationship between current and voltage due to Kirchhoff's voltage law applied to the resistor and voltage source, is
A diode can be formed away from a MOSFET source/drain, for example, with an n+ implant in a p-substrate or with a p+ implant in an n-well. If the diode is connected to metal near the gate(s), it can protect the gate oxide. This can be done only on nets with violations, or on every gate (in general by putting such diodes in every library cell).
The PIN diode obeys the standard diode equation for low-frequency signals. At higher frequencies, the diode looks like an almost perfect (very linear, even for large signals) resistor. The P-I-N diode has a relatively large stored charge adrift in a thick intrinsic region. At a low-enough frequency, the stored charge can be fully swept and the ...
Ad
related to: diode problem solving