Search results
Results from the WOW.Com Content Network
Risk is the lack of certainty about the outcome of making a particular choice. Statistically, the level of downside risk can be calculated as the product of the probability that harm occurs (e.g., that an accident happens) multiplied by the severity of that harm (i.e., the average amount of harm or more conservatively the maximum credible amount of harm).
Auto-antonym: A word that is encoded with opposing meanings. Absurdity; Excusable negligence: If a behavior is excusable, it is not negligence. Gödel's incompleteness theorems: and Tarski's undefinability theorem; Ignore all rules: To obey this rule, it is necessary to ignore it. Impossible object: A type of optical illusion.
In category theory, a branch of mathematics, the opposite category or dual category C op of a given category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself.
A human touching or handling eggs or baby birds will not cause the adult birds to abandon them. [55] The same is generally true for other animals having their young touched by humans as well, with the possible exception of rabbits (as rabbits will sometimes abandon their nest after an event they perceive as traumatizing).
The log-likelihood function being plotted is used in the computation of the score (the gradient of the log-likelihood) and Fisher information (the curvature of the log-likelihood). Thus, the graph has a direct interpretation in the context of maximum likelihood estimation and likelihood-ratio tests .
The opposite or complement of an event A is the event [not A] (that is, the event of A not occurring), often denoted as ′,, ¯,,, or ; its probability is given by P(not A) = 1 − P(A). [31] As an example, the chance of not rolling a six on a six-sided die is 1 – (chance of rolling a six) = 1 − 1 / 6 = 5 / 6 .
In category theory, a branch of mathematics, an antiisomorphism (or anti-isomorphism) between structured sets A and B is an isomorphism from A to the opposite of B (or equivalently from the opposite of A to B). [1] If there exists an antiisomorphism between two structures, they are said to be antiisomorphic.
Used paired with ±, denotes the opposite sign; that is, + if ± is –, and – if ± is +. ÷ (division sign) Widely used for denoting division in Anglophone countries, it is no longer in common use in mathematics and its use is "not recommended". [1] In some countries, it can indicate subtraction.: 1.