enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stopping time - Wikipedia

    en.wikipedia.org/wiki/Stopping_time

    Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...

  3. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Usually the term "Markov chain" is reserved for a process with a discrete set of times, that is, a discrete-time Markov chain (DTMC), [11] but a few authors use the term "Markov process" to refer to a continuous-time Markov chain (CTMC) without explicit mention.

  4. File:Markov Chain weather model matrix as a graph.png

    en.wikipedia.org/wiki/File:Markov_Chain_weather...

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  5. Reflection principle (Wiener process) - Wikipedia

    en.wikipedia.org/wiki/Reflection_principle...

    The earliest stopping time for reaching crossing point a, := {: =}, is an almost surely bounded stopping time. Then we can apply the strong Markov property to deduce that a relative path subsequent to τ a {\displaystyle \tau _{a}} , given by X t := W ( t + τ a ) − a {\displaystyle X_{t}:=W(t+\tau _{a})-a} , is also simple Brownian motion ...

  6. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.

  7. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains, their stationary distributions and mixing times, and methods for determining whether Markov chains are rapidly or slowly mixing. [1] [4]

  8. M/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/G/1_queue

    Markov chains with generator matrices or block matrices of this form are called M/G/1 type Markov chains, [13] a term coined by Marcel F. Neuts. [ 14 ] [ 15 ] An M/G/1 queue has a stationary distribution if and only if the traffic intensity ρ = λ E ( G ) {\displaystyle \rho =\lambda \mathbb {E} (G)} is less than 1, in which case the unique ...

  9. Optional stopping theorem - Wikipedia

    en.wikipedia.org/wiki/Optional_stopping_theorem

    Suppose further that the walk stops if it reaches 0 or m ≥ a; the time at which this first occurs is a stopping time. If it is known that the expected time at which the walk ends is finite (say, from Markov chain theory), the optional stopping theorem predicts that the expected stop position is equal to the initial position a.