Search results
Results from the WOW.Com Content Network
The Mpemba effect is the name given to the observation that a liquid (typically water) that is initially hot can freeze faster than the same liquid which begins cold, under otherwise similar conditions. There is disagreement about its theoretical basis and the parameters required to produce the effect.
During the final stage of freezing, an ice drop develops a pointy tip, which is not observed for most other liquids, and arises because water expands as it freezes. [8] Once the liquid is completely frozen, the sharp tip of the drop attracts water vapor in the air, much like a sharp metal lightning rod attracts electrical charges. [8]
Lake-effect snow is produced during cooler atmospheric conditions when a cold air mass moves across long expanses of warmer lake water. The lower layer of air, heated by the lake water, picks up water vapor from the lake and rises through colder air. The vapor then freezes and is deposited on the leeward (downwind) shores. [1]
During extreme cold events, you may hear a loud boom and feel like you have experienced an earthquake. ... As little as 6 inches of snow is enough to keep the freezing air from affecting the ...
Mpemba effect – Natural phenomenon that hot water freezes faster than cold; Oral rehydration therapy – Type of fluid replacement used to prevent and treat dehydration; Osmotic power – Energy available from the difference in the salt concentration between seawater and river water; Oxyhydrogen – Explosive mixture of hydrogen and oxygen gases
Hard rime forms by rapid freezing of supercooled water under at least moderate wind conditions. The droplets freeze more or less individually, leaving air gaps. Clear ice forms by slow freezing of supercooled water. Clear ice is typically transparent and homogeneous. Its amorphous and dense structure makes it adhesive.
Most liquids freeze by crystallization, formation of crystalline solid from the uniform liquid. This is a first-order thermodynamic phase transition, which means that as long as solid and liquid coexist, the temperature of the whole system remains very nearly equal to the melting point due to the slow removal of heat when in contact with air, which is a poor heat conductor.
For premium support please call: 800-290-4726 more ways to reach us