enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    The electric power in watts produced by an electric current I consisting of a charge of Q coulombs every t seconds passing through an electric potential difference of V is P = work done per unit time = Q V t = I V {\displaystyle P={\text{work done per unit time}}={\frac {QV}{t}}=IV\,}

  3. International System of Electrical and Magnetic Units

    en.wikipedia.org/wiki/International_System_of...

    Notes international ampere The unvarying current which, when passed through a solution of silver nitrate in water, deposits silver at the rate of 0.001 118 00 grams per second The current produced in a conductor with a 1 ohm resistance when there is a potential difference of 1 volt between its ends 0.1 CGS-EMU units of electric current

  4. Electric current - Wikipedia

    en.wikipedia.org/wiki/Electric_current

    The ampere is an SI base unit and electric current is a base quantity in the International System of Quantities (ISQ). [4]: 15 Electric current is also known as amperage and is measured using a device called an ammeter. [2]: 788 Electric currents create magnetic fields, which are used in motors, generators, inductors, and transformers.

  5. Alternating current - Wikipedia

    en.wikipedia.org/wiki/Alternating_current

    A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.

  6. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, [1] one arrives at the three mathematical equations used to describe this relationship: [2]

  7. Electrical energy - Wikipedia

    en.wikipedia.org/wiki/Electrical_energy

    Electrical energy is energy related to forces on electrically charged particles and the movement of those particles (often electrons in wires, but not always). This energy is supplied by the combination of current and electric potential (often referred to as voltage because electric potential is measured in volts) that is delivered by a circuit (e.g., provided by an electric power utility).

  8. Direct current - Wikipedia

    en.wikipedia.org/wiki/Direct_current

    Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current. [1]

  9. Sources of electrical energy - Wikipedia

    en.wikipedia.org/wiki/Sources_of_electrical_energy

    The electric field sends the electron to the p-type material, and the hole to the n-type material. If an external current path is provided, electrical energy will be available to do work. The electron flow provides the current, and the cell's electric field creates the voltage. With both current and voltage the silicon cell has power.